

Demonstration of an Innovative Phosphorus Recovery Technology with Widespread Application to the Great Lakes Region

May 22, 2019

Outline

Scope of challenge

Technology Overview

Demonstrated applications

Municipal

Agricultural

Co-product value

Summary

Scope of Challenge

Quick Wash Process

Two step process –allowing for tuning of a solution to a given application

- Step 1 (Solubilization): Transforms particulate phosphorus into a soluble form (can vary from 70% - 97% depending on stream characteristics)
- Step 2 (Precipitation): Precipitates out soluble phosphorus in the form of amorphous calcium phosphate (95%+ capture)

Quick Wash

APPLIED ENVIRONMENTAL 5 0 L U T I O N S

- US Patent 8,673,046
- Phosphorus recovered as amorphous calcium phosphate

Low P
Permeate

Calcium Phosphate

Applications - Municipal

OWDA
Demonstration
Program –
Perrysburg, OH

June 2018 – December 2018

Program Objectives

Demonstrate the ability to significantly reduce side stream P loads

Initial assessment of calcium phosphate quality produced

3. Develop economics

Historic Flow Distribution

Historic Phosphorus Performance

Source	Concentration, mg/L	Flow, GPD	Phosphorus, lb/day
BFP Filtrate	12.15	29,977	3.04
Digester Supernate	117.6	15,333	15.07
Total Recycle	28.18	34,484	8.12

Historic Chemical usage

Typical Solubilization Titrations

Representative Titration curve on precipitation

TP testing correlation with WWTP Lab

TP correlation across wide TP range

Mix Well Feed Results

Mix Well TP

Degree of Solubility

Side Stream P recovery

Combined Side Stream P recovery

KDS Rotating Disc Separator

Dewatering Performance

Sludge P recovery

Overall Sludge Phosphorus

Degree of solubility

Dewatered Filtrate Results

Sludge P recovery

Sludge Filtrate

Economic Model Assumptions

Criteria	Condition	PWWTP	
Average daily flow, MGD	5MGD	4.48MGD	
Stream to be treated	Pre-dewatering sludge	Belt Filter Press feed	
Average stream flow, GPD	40,000 GPD	35,667 GPD	
Days of operation per year	260 (5 days/week)	223 (average '16-'18)	
Primary influent source	Residential	Residential	
Raw TP of treated stream	468mg/L	1242mg/L	
% OP of treated stream	58%	59%	
Average incoming TP	3.9mg/L	4.5mg/L	
Alkalinity of stream to treat	3600mg/L	12,645mg/L	
Solubility conversion	95%	96%	
Precipitation recovery	99%	98.9%	
Polymer usage	98 GPD	98 GPD	
Ferrous chloride	334 GPD	334 GPD	
Cost of polymer	\$0.83/gallon		
Cost of Ferrous chloride	\$0.56/gallon		
Cost of 93% sulfuric acid	\$0.22/lb		
Cost of mixed Ca/Mg hydrated lime	\$0.25/1000 gallons treated		
Value of calcium phosphate produced	\$0.05/pound - \$0.10/pound		
Present Worth duration	20 years		
Assumed interest rate for PW	5%		

Summary In-Scope Costs

Metric	Estimated Cost	
OPEX / Year		
Power @\$0.07/kwh	\$ 2,347	
Acid	\$ 5,813	
Hydrated Lime	\$ 2,600	
Total	\$ 10,760	
OPEX NPV (20 years @5%)	\$ 134,090	
CAPEX		
In-Scope	\$ 313,176	
25% contingency	\$ 78,294	
Total In-Scope Capex	\$ 391,470	
Total 20 NPV	\$ 525,560	

Economic Metrics

Metric		Units	Results
Phosphorus Removed		Lbs. P/Day	147
Calcium Phosphate Produced		Lbs. Cal Phosphate/Day	1470
Recycle stream P removed		Lbs. P /Day	8.12
Ferrous chloride savings		\$/Day	\$4.55
Cost per Lb P removed			
	Capex only	\$/lb P removed	\$0.597
	Annual Opex only	\$/lb P removed	\$0.328
	20 yr PW	\$/lb P removed	\$0.802
Value of Cal P – low		\$ (@\$0.05/lb)/Day	\$73.50
Value of Cal P – high		\$ (@\$0.10/lb)/Day	\$147.00
Tota	al cost recovery		
	Cal P Value (mid-range)	\$ (20 yr PW)	\$491,715
	Ferrous Chloride savings	\$ (20 yr PW)	\$20,281
	Total	\$ (20 yr PW)	\$511,996

Applications - Agricultural

- Agricultural anaerobic digester
- 55,000 GPD digestate
- 5 Lagoon treatment train
 - Receiving lagoon
 - 3 holding lagoons
 - 1 large irrigation lagoon
- Current TP in irrigation lagoon: 200-300mg/L
 - Need to reduce to 50mg/L
 with existing crop rotation and acreage

- Multiple lagoon treatment train
- Final lagoon to support center pivot irrigation

Site 1 Performance confirmation

Irrigation Lagoon Feed

- 4500 Cow Dairy
- 5 Lagoon treatment system
 - L1: Sileage Lagoon
 - L2 & L3: Receiving Lagoons
 - Separated manure (~2% solids)
 - L4: Anaerobic Lagoon
 - L5: Irrigation Lagoon

Site 2 Initial Results

Impact of Quick Wash

- Ohio Farm Bureau
 Demonstration Farm
- 5500 head swine operation
 - Grower and Finisher operation
- Sponsored by Ohio Farm Bureau

- Expanding dairy
- High P in post sand-lane storage
- Sponsored by Ohio Dairy Producers

- Companion facility to Site 1
- Expanding capacity to 72,000
 GPD digestate
- Less available land to support high P in center pivot irrigation

Co-Product value

		% As Is Basis	lbs/ Ton
Total Nitrogen Total Phosphor Avail. Phospho Avail. Phos. a Potassium Potassium as	us (P) rus (P)	0.97 1.950 1.815 4.159 0.904 1.089	19.40 39.00 36.30 83.18 18.08 21.78
Calcium Magnesium Sodium	(Ca) (Mg) (Na)	26.873 0.202 2.340	537.46 4.04 46.80
		ppm As Is Basis	lbs/ Ton
Boron Iron Manganese Copper Zinc	(B) (Fe) (Mn) (Cu) (Zn)	40.69 1015.00 103.50 35.85 80.55	
<u>H</u> q		8.40	

Summary

Demonstrated to recover ~95% + of available phosphorus

Application in municipal and agricultural applications

Co-product with real and relevant value

Growing adoption

Questions?

Rick Johnson
Commercial Director
Applied Environmental Solutions
rj@r2hsolutions.com
440.415.2151